Paper Currency Recognition System using Characteristics Extraction and Negatively Correlated NN Ensemble

نویسنده

  • N. G. Bawane
چکیده

An efficient currency recognition system is vital for the automation in many sectors such as vending machine, rail way ticket counter, banking system, shopping mall, currency exchange service etc. The paper currency recognition is significant for a number of reasons. a) They become old early than coins; b) The possibility of joining broken currency is greater than that of coin currency; c) Coin currency is restricted to smaller range. This paper discusses a technique for paper currency recognition. Three characteristics of paper currencies are considered here including size, color and texture. By using image histogram, plenitude of different colors in a paper currency is calculated and compared with the one in the reference paper currency. The Markov chain concept has been considered to model texture of the paper currencies as a random process. The method discussed in this paper can be used for recognizing paper currencies from different countries. This paper also represents a currency recognition system using ensemble neural network (ENN). The individual neural networks in an ENN are skilled via negative correlation learning. The purpose of using negative correlation learning is to skill the individuals in an ensemble on different parts or portion of input patterns. The obtainable currencies in the market consist of new, old and noisy ones. It is sometime difficult for a system to identify these currencies; therefore a system that uses ENN to identify them is discussed. Ensemble network is much helpful for the categorization of different types of currency. It minimizes the chances of misclassification than a single network and ensemble network with independent training.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

افزایش نرخ کارایی طبقه بندی با استفاده از تجمیع ویژگی های موثر روش های مختلف ترکیب شبکه های عصبی

Both theoretical and experimental studies have shown that combining accurate Neural Networks (NN) in the ensemble with negative error correlation greatly improves their generalization abilities. Negative Correlation Learning (NCL) and Mixture of Experts (ME), two popular combining methods, each employ different special error functions for the simultaneous training of NN experts to produce negat...

متن کامل

A Novel Approach to the Indian Paper Currency Recognition Using Image Processing

In this paper, we propose a system for the recognizing the paper currency. This is based on interesting features extractions like colors of paper currencies and correlation between images. Depending on the color of the currency is grouped into three groups-red, green and blue. In this system we are including the new currency notes of Rs.500 and Rs.2000.For Identifying the new currency we develo...

متن کامل

Face Detection Technique by Gabor Feature and Kernel Principal Component Extraction Using K-NN Classifier with Varying Distance

Face recognition is always a hot topic in research. In this paper, we represent a robust method of face recognition using gabor feature extraction, kernel PCA and K-NN classifier. Gabor features are calculated for each face images then it’s polynomial kernel function is calculated, it is directly applied to the K-NN classifier. The effectiveness of the proposed method is demonstrated by the exp...

متن کامل

A Review Paper on Currency Recognition System

In this paper, an algorithm based on the frequency domain feature extraction method is discussed for the detection of currency. This method efficiently utilizes the local spatial features in a currency image to recognize it. The entire system is pre-processed for the optimal and efficient implementation of two dimensional discrete wavelet transform (2D DWT) which is used to develop a currency r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010